Sunday, April 1, 2012

018. BENDA APAKAH SEBUAH BILANGAN ITU ?



BENDA APAKAH SEBUAH BILANGAN ITU ?

Setiap bilangan, misalnya bilangan yang dilambangkan dengan angka 1, sesungguhnya adalah konsep abstrak yang tak bisa tertangkap oleh indera manusia, tetapi bersifat universal. Misalnya, tulisan atau ketikan 1
yang terlihat di layar monitor dan Anda baca saat ini bukanlah bilangan 1, melainkan hanya lambang dari bilangan 1 yang tertangkap oleh indera penglihatan Anda berkat keberadaan unsur-unsur kimia yg peka cahaya dan digunakan untuk menampilkan warna dan gambar di layar monitor.
Demikian pula jika Anda melihat lambang yang sama di papan tulis, yang Anda lihat bukanlah bilangan 1, melainkan serbuk dari kapur tulis yang melambangkan bilangan 1.
Teori bilangan pada saat ini jauh lebih kompleks daripada sekedar aritmatika dan aplikasinya lebih banyak pada berbagai ilmu dan teknologi mutakhir, misalnya pada kriptografi. Perlu diketahui, masalah dalam teori bilangan yang dikenal dengan Teorema Terakhir Fermat baru bisa dipecahkan setelah berumur ratusan tahun.
Konsep bilangan-bilangan yang lebih umum dan lebih luas memerlukan pembahasan lebih jauh, bahkan kadang-kadang memerlukan kedalaman matematis dan logika untuk bisa memahami dan mendefinisikannya. Misalnya dalam teori matematika, himpunan semua bilangan rasional bisa dibangun secara bertahap, di awali dari himpunan bilangan-bilangan asli.
Dalam matematika, terdapat dua kesepakatan mengenai himpunan bilangan asli. Yang pertama definisi menurut matematikawan tradisional, yaitu himpunan bilangan bulat positif yang bukan nol {1, 2, 3, 4, ...}. Sedangkan yang kedua definisi oleh logikawan dan ilmuwan komputer, adalah himpunan nol dan bilangan bulat positif {0, 1, 2, 3, ...}. Bilangan asli merupakan salah satu konsep matematika yg paling sederhana dan termasuk konsep pertama yang bisa dipelajari dan dimengerti oleh manusia, bahkan beberapa penelitian menunjukkan beberapa jenis kera juga bisa menangkapnya.
Wajar apabila bilangan asli adalah jenis pertama dari bilangan yang digunakan untuk membilang, menghitung, dsb. Sifat yang lebih dalam tentang bilangan asli, termasuk kaitannya dengan bilangan prima, dipelajari dalam teori bilangan. Untuk matematika lanjut, bilangan asli dapat dipakai untuk mengurutkan dan mendefinisikan sifat hitungan suatu himpunan.
Setiap bilangan, misalnya bilangan 1, adalah konsep abstrak yg tak bisa tertangkap oleh indera manusia, tetapi bersifat universal. Salah satu cara memperkenalkan konsep himpunan semua bilangan asli sebagai sebuah struktur abstrak adalah melalui aksioma Peano (sebagai ilustrasi, lihat aritmetika Peano).
Konsep bilangan-bilangan yg lebih umum dan lebih luas memerlukan pembahasan lebih jauh, bahkan kadang-kadang memerlukan kedalaman logika untuk bisa memahami dan mendefinisikannya. Misalnya dalam teori matematika, himpunan semua bilangan rasional bisa dibangun secara bertahap, diawali dari himpunan bilangan-bilangan asli.
Dalam matematika, bilangan prima adalah bilangan asli yang lebih besar dari 1, yang faktor pembaginya adalah 1 dan bilangan itu sendiri. 2 dan 3 adalah bilangan prima. 4 bukan bilangan prima karena 4 bisa dibagi 2. Sepuluh bilangan prima yang pertama adalah 2, 3, 5, 7, 11, 13, 17, 19, 23 dan 29.
Jika suatu bilangan yang lebih besar dari satu bukan bilangan prima, maka bilangan itu disebut bilangan komposit. Cara paling sederhana untuk menentukan bilangan prima yang lebih kecil dari bilangan tertentu adalah dengan menggunakan saringan Eratosthenes

0 comments:

:a: :b: :c: :d: :e: :f: :g: :h: :i: :j: :k: :l: :m: :n:

Post a Comment